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It is well known that the one-dimensional plane non-steady flow of a barotropic gas, ad- 

jacent to a region of gas at rest, must be a simple wave (cf. [l]). In this case, the region 

of the perturbed gas and the region of rest are separated by a weak plane discontinuity, 

along which the first or higher derivatives of the density and velocity components experi- 

ence discoatinuities. 

However, in problems where the flow adjoins a region of rest across an arbitrary 

curved weak discontinuiti in two-dimensional cases, or across some curved weak-discon- 

tinuity surface in threedimensional cases, the flow is, generally speaking, no longer a 

simple wave. This situation already follows from the fact that in case of single waves, the 

level surfaces of the main gas-dynamic quantities can either be straight lines (in two- 

dimensional flows), or plane surfaces (in three-dimensional flows, cf. [2] and [3] 1. 

The attempt to describe the flows behind the arbitrary weak discontinuities by means 

of the theory of double or triple waves(cf.[4 and 71) also does not succeed in general, as 

we shall see below. It is only possible to say in the most general case, that the flow ad- 

jacent to a region of rest across a weak discontinuity (which shall in the followihg be 
assumed to be sufficiently smooth), is a potential flow. This property may readily be 

deduced, for example, from the kinematic compatibility conditions, which must be satis- 

fied along the discontinuity surface. 

If however, it is assumed in the plane case that the flow satisfies some conditions of 

smoothness in the neighborhood of the weak discontinuity, then it is possible to use double 

waves to obtain an approximate solution in some neighborhood of an arbitrary curved weak 

discontinuity. It is the aim of the present paper to study the equations of the double waves 

arising in such regions, and also to study the question of applying the results obtained 

from the use of double waves to describe the flow pattern in the neighborhood of an arbitrary 

weak discontinuity. At the same time, we shall also consider cases where the derivatives 

of the density p and of the velocity components ui along the weak discontinuity are not 
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small, and where consequently, the acoustic approximations are inadequate. 

We observe that in the three-dimensional case, double waves become automatically 

unusable, since the level surfaces of p and ui for double wave solutions can only be ruled 

surfaces ; the study of triple waves is difficult since they are described by an over- 

determined system of nonlinear partial differential equations of complicated structure. 

Below we shall study plane isentropic flows of a polytropic gas with the equation 

of state 

P = ApY, A = const 

These flows are described by Equations 

(0.1) 

(0.2) 

(0.3) 

Here p is the pressure, y the adiabatic exponent, and c the speed of sound. 

We shall assume that in the region of rest (ui = 0) and c = 1. The ai in the perturbed 

region are referred to the unperturbed sound speed, t is in seconds, and the units of ri are 
then chosen suitably. 

1. To study the behavior of the solutions to the equations of double waves in the 

neighborhood of the point Z,Q = 0 (i I= 1, 2), we shall write the system of equations 

describing the double wave [4 and 51 in polar coordinates 

y 0 [err (I- e$) + q e,,.+ 2 e($!?e,, + 

(1.1) 

x2= rsinrp+~~8(8,sinrp+8,‘~)]t+~~sincp+~,~~ 
[ 

( u1=rcoscp, uz==rsincp, 0=$&j 

(1.3) 

c, cPE[-fin, Jtl 1 

Here @ is the velocity potential, and subscripts r and cp denote differentiation with 

respect to r and cp respectively. 

Equations (1.1) and (1.2) are readily obtained from the system (0.1) to (0.3) with the 

aid of the Cauchy integral (cf. for example, [7]) under the assumption that there exists a 

relationshi c - c (ul, I+), and that u1 and U, are functionally independent (in f4 and 5], 
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potential flow was not assumed). Equations (1.3) are used to construct the flow in the 

physical space xi, z,, t after determining the functions 8 and a. 

The point u1 = u, = 0 in the hodograph plane (st p ut plane) corresponds to the 

segment of the axis r =O, in the coordinates r and cp. It is convenient to change to polar 

coordinates in the equations of double waves, since if we were to consider them in the 

ut , rc, plane directly, in which plane the equations 

correspond to equations (1.3), then it would be necessary to seek a solution to the double 

wave equations, which would be multivalued in ei or ai at the point (0,O). 

The limiting values of ei and Qi would then depend on the nature of the approach of 

(@I, ~3) to the point (O,O), since otherwise, the point ~1 = 0, sz = 0, 8 = 2 / fr - 1) 

would not correspond to some surface of weak discontinuity w (x1, xe, t) = 0 in the 

physical plane. 

We shall seek a solution to the system (1.1) and (1.2) which would satisfy some 

conditions at r P 0, in such a way that the formula (1.3) would define in the Xl, X2, t 

space some nondegenerate surface X1 = X1 (t, up>, 

X2 =X,(t,tp)andwhenr=O, 0=2/(-r-I) 

From the kinematic compatibility conditions (cf. [8]) for the function f (&, Eat Es), 

whose first derivatives possss~ discont~uities across the surface S (&, &, &) = 0 

Here hf is a proportionality factor. Substituting for f the functions ui and c, and 

assuming that El = Xl, & = X2:,, Es = t, we see that the rank of the matrix R for 

the present case 

R 

au, f ax1 au, I axa auljat 
R = aurjazl aup I axa aus 1 at (1.4) 

hiax1 do I axa! actat R 

is equal on the discontinuity surface to unity. Thus, at the points on the surface of weak 

discontinuity w (XIf x0, t) = 0, the quantities c, u1 and u, are pairwise dependent. 

We shall further assume that outside the surface of weak discontinuity ut and u, are 

functionally independent, i.e. the neighborhood of the point (0,O) in the hodograph plane, 

corresponding in the class of double waves to the flow region in the x1x2Eat space near the 

discontinuity surface, can be mapped in onesto-one (except for the point (0.0)) correspond- 

ence on the plane ?v& 

Assuming that equations (1.3) for r = 0 determine some surface, while xi in (1.3) 

continuously depend on r and cp (also at r = 0) we immadiately obtain from (1.3) for 
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r = 0 the conditions 

lint $ = &a (0) fll(rpf and la(cp)- are continuous) (1.5) 

It can be shown that if the derivatives of ui and c experience finite jumps on the weak 

discontinuity surface o (z~, zo, t) = 0 and the flow across the weak discontinuity 

adjoins the state of rest then, at any instant t = to, the tangents to the instantaneous 

streamline at the points of the weak discontinuity surface are orthogonal to this surface. 

This fact does not depend on whether or not the flow is a double wave. 

To prove this, we shall write the equation of the streamline at the instant t = t,, as 

df _ dxa 
w a2 

0.6) 

Along the stream line 2, = zt (E, to), z, = +J If, to) (tis the parameter), we have 

ut = u1 (E, to), us = u, (8, toWet t- 5 0 correspond to the point on the surface of the weak 

discontinuity, and 

where the prime denotes differentiation with respect to 5. From (1.7). with help of the 

kinematic conditions of compatibility, we obtain for the derivatives ut and ur the following 

From this, a = b / 4. But, from the condition of potential flow (0.3), it follows that 

on the weak discontinuity surface, no that the assertion is proved for the case when the 

instantaneous streamlfne approaches the di8cont~nity surface and is not tangent to it. 
The case of tangency, when a (a0 / az,) + ace / 3% = 0 , cannot be realized, since if 

along the trajectory ul z$ 0 and U, $0, then we alwaye have 

I hl a=lim% = - 
ha 

For a = 0 and a = m the consideration kp carried oat in a similar manner. 

For the normal velocity of propagation V of the weak discontinuity, whoae motion ia 

governed by (1.31, we have 

since the weak discontinuity propagates with the speed of sound, equal in this came to 

unity, and the vector (CO9 Cp, sin cp) is normal to the diacontfnuity surface. From (1.9), 

we readily obtain for t = 0, 

tert = 4 ~I.10) 
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Thus, we have for equation (1.1) on the line I = 0 the initial Cauchy relations 

e-5, 9,=0, lerl=i for r=o (1.11) 

The quantity fj, ie continuous at t = 0, hence two cases muat always be considered : 

0, =1 and@,=-1. 

Let na now consider the claae of solutions of the equations of double waves, for 

which all the fourth order derivatives of the function 8, together with the mixed derivatives 

(second order in both r- and q)are continnotm in the neighborhood of r = 0. 

We observe that this class includes all the self-similar cylindrical flows with the 

similarity variable vzi2 -!- x2* I t . The behavior of these flowa, in the neighborhood of 

a weak discontinuity which leaves behind it a region of rest. was studied, for example, in 

[9]. In contrast to the one-dimensional spherical motion, when on the weak discontinuity 

(cf [9] ) (motion of weak dincontinuity behind normal detonation wave - at the front of the 

wave the Chapman-Joagnet condition is satisfied) first derivatives of ui and p remain in 

such situations continuous while the second and all the other derivatives become infinite, 

in the cylindrical case (similarly to the oneaimensional plane case), the first derivative 

already has a first order discontinuity*. 

Let ua consider the neighborhood of r = 0, A r = h, h < 4. In accordance with 

the amaumptions made, we have in this neighborhood 

U&g the continuity of fj,,,, at r = 0, we obtain the estimates 

JLoog, ~P_y.!!LO(l), +%I (h), +--o(1) (1.13) 

Neglectfrtg in (1.1) terma of the order of 0 (A) and 0 VP), and keeping the terms of 

the order 0 (I), we obtain for 8 the equation 

(1.14) 

Condition6 (1.11) determine, in the neighborhood of r = 0, a family of solutions of 

Equation (1.141, consequently Equation (1.1) also possesses a family of solutions 

l In [lo] a method ia shown for constructing a series of exact solutions behind two- 
dimennionel normal detonation waves. These solutions were such, that at Borne distance 
behind the wave, there was a moving curved weak discontinuity, leaving behind it a 
region of rest. Because of some arithmetical error in determining the behavior of the 
expression 511 near r = 0 (we have put &,l - 1 ti Br, while it should have been 

err - l-B)/r,B= coast) we incorrectly stated there that the first derivativea of ui 
and c are continaoue on the weak diecontinuity. However, all the fnrther basic results, 
and the rotated boundary value problems, remain correct. All the calculations are also 
ear&d oet in a eonqletely similar manner. 
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satisfying (l.ll), since Equation (1.14) can be obtained from (1.1) simply by assuming 

that 8 does not depend on cp. 

In fact, let us first consider the case 8, = 1. Assuming that I/ = 6, and c-g 

out a linearization in (1.14) in the neighborhood of r = 0, we obtain for y (r) the equation 

From this I/ = 1 + ‘jz (y + ‘I)? + c (q)r2, and 

Here C (~1 ia an arbitrary function of cp. 

Similarly, for 0,. = - 1 we have 

(1.151 

(1.16) 

(1.171 

From (1.16) and (1.17), it follows that the following expression is uniquely determined 

in the neighborhood of r = 0, with the accuracy ot 0 Q) 

I- $8 
-ZC!Z 

T 
2A (A=*y for e,+) (1.18) 

The signs are assumed to be in correspondence. In addition, we always have 

8,, = l/r (y + 1) f or r = 0. Assuming that in (1.21, @ is twice continuously different- 

iable with respect to r and Cp, using the estimates for small r 

and the relation (1.181, and 

we finally obtain for @ 

neglecting in (1.21 the terms of the orders 0 (A) and 0 (A”), 

rp(D,.p + 2A(D,, + 2Ar#, = 0 (1.191 

Depending on the sign of A, equation (1.191 in the half-plane r3 0 may either be 

elliptic or hyperbolic. If the density of the gas increases with the distance from the weak 

discontinuity surface, 8, = 1 (e.g. weak discontinnities behind a normal detonation 

wave), A < 0, and equation (1.19) is hyperbolic for r3 0. Conversely, when the dansity 

decreases (when a weak discontinuity moves across the gas at rest, picking up new masses 

of gas), 0, = - 1, A > 0 and equation (1.19) will be elliptic in type. In both cases, 

the line t = 0, on which @, = 0 (<B = const), will be a degenerate parabolic line; at 

the same time, it will be a characteristic line, since for dr = 0, df&, = 0 the con- 

ditions of a characteristic strip (cf. [8]> are satisfied for Equation (1.19). We note that 

the Canchy relations (1.111 also define a characteristic strip, while the line r = 0 is a 



206 A. F. Sidorov 

line along which the equations (1.1) and (1.2) are parabolic. 

The substitution r = ‘f z / 2A, reduces Equation (1.19) in the hyperbolic case 

to the form 

ZOIL - #upcp - .z@, = 0 (2 > Q) (1.20) 

and in the elliptic case, to the form 

2% + @Cpq + z@z = 0 (2 > 0) (1.21) 

Let us consider the question of determining the initial data for r = 0 for the function 

a, so as to have the formulas (1.3) define the motion of a weak discontinuity of arbitrary 

form. We shall note that the shape of the weak discontinuity surface in the xl, x2, t 
space is determined as soon as we are given the shape of the line of intersection of this 

surface with the plane t = 0. Without loss of generality, we shall assume that the motion 

of a weak discontinuity is given by the equation 

t = w (x1, x2) (1.22) 

The function y satisfies the equation 

Yy,2 +Yy,2 =1, Yi = 8Y I dX* (1.23) 

since the front of the weak discontuity moves with a constant normal velocity, equal to 

the-speed of sound. Equation (1.23) can be easily integrated for arbitrary initial data, and 

consequently, the motion of the weak discontinuity will be determined. 

Let us put @r = n (Y) at r = 0. Th en, by the assumptions made above, 

lim (r-WV) = 1, (cp) = II’ (rp) RS r + 0 (cf. (l.S)), and from (1.3) it follows that the 

front of the weak discontinuity is, at t = 0,give.n by the parametric equations 

x1 = II ((p) cos cp - IT’ (Y) gin cp, x2 = n (cp) sin cp + n’ (9) COs Cp (1.24) 

If the line of weak discontinuity is given at t = 0 by the equation $’ (x1, x2) =0, then 

we have for n ((p) th e ordinary differential equation 

F (n ((P) ~0s cp - rI’ (cp) sin cp, II (rp) sin cp $- II’ (rp) cos cp) = 0 (1.25) 

Using the geometric relations at q = 0 to obtain some point (~1, x2) = (u, b), 

we can write the initial condition for (1.25) in the form n (0) = a. 

Thus, we have for Equation (1.19) the initial relations 

Q, =o, CD>, =o, CD, - H ((p) for r = O 

since the additive constant in @ is unimportant. 

(1.26) 

We note that, finding from (1.3) for r = 0, t = to the vector tangent to the weak 

discontinuity (8x1 / &p, ds, / 89) we have with the aid of (1.24). 

i.e. the vector (CO9 rp, sin cp), in accordance with the above, is a unit vector normal to 

the diecontinuitv line. 
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2. Let us study the Cauchy problem at z = 0 for the equations (1.20) and (1.21). 

Generally speaking, a problem with initial data corresponding to the parabolic case is in- 

correct for both elliptic and hyperbolic cases [ll]. 

Let us first consider the hyperbolic case, and using the theorem of [12], we shall show 

that there exists a twice continuously differentiable solution to the problem posed for 

Equation (1.201, and that such a solution is unique. 

Introducing the functions 

we shall transform Equation (1.20) to a system of two equations of first order 

u, + vz = 0, zuz+vo-zu=o (2.21 

Initial data for a and u will be 

U=&II(q), V=O for z=O (2.3) 

Let the region D be bounded by the segment [M, N] of the (P-axis (points M and N 

belong to the interval [ - n, n]) and the characteristics 

cp - 2 l/z= c, = const, cp + 2 I’;= c, = const (2.4) 

passing through the points M and N respectively. The coefficients of the system (2.2) are 

continuous in the rectangle up E [M, N], z E 10, Gl,where 8 is sudh,that this 

rectangle contains the region D, including its boundaries. 

Calculating the function (the initial conditions of Theorem 1 [12] have the form 

v (cp, 0) = v (up), andq-1 (U - P) = z (cp)on MN, h w ere P is some fixed fnnction 

(see [ 1211, and v and 7 are sufficiently smoot!) : 

“-I (Cp, 2) = ‘=p 
s 

b (cp, z) z-’ dz 
z 

where b is the coefficient of I in the second equation of (2.2), we shall have 

rl = exp (2 - 6), i.e. Tj = con& # 0 at z = 0. By Theorem 1 of [12], whose condi- 

tions are satisfied in the present case, and assuming that 11 (9) has four continuous de- 

rivatives, we obtain the existence of an unique twice continuously differentiable solution 

of system (2.2) with initial data (2.3). 

Putting 0 = x (z)rl (cp), iu (1.201 , we obtain the ordinary differential equations for 

X and $ 

where X is an undetermined parameter. Just as in [IO], it is easy to show that two linearly 

independent solutions of equation (2.61 in the neighborohood of I = 0 must have the form 



208 A. F. Sidorov 

Xl ==A12 + 0 (4, A, =const#O 

x2 = A, + 0 (11, A, = const + 0 

From (1.26), it follows thatx (0) = 0, and X, cannot be a solution. 

For Xh at t = 0, the following initial data may be taken 

xa (0) = 0, Xh? (0) = 1 (2.71 

We shal1 consider a closed weak discontinuity, with up E [ - X, n] ; from (2.5), we 

obtain h = k2 (k= 0, 1, 2 . . .). Putting X = zg, we have from (2.6) the following 

equation for y (z) 

zy” + (2 - z)y’ + (P - l)y = 0 (2.8) 

Assuming that y “is continuous at z = 0, from (2.81, we have, for the values of I near 

to zero, 

Y = exp [ - Va (k2 - l)z] (2.9) 

hence, the expression for rf, in some small neighborhood of z = 0 is the following 

0 = 2 ; (uk cos kcp + bk sin ktp) exp (- ‘7 z) 

where 

(2.10) 

(2.11) 

It is clear that for sufficiently smooth functions fi (cp), the application of Fourier’s 

method is correct. 

Let us consider the elliptic case. The problem with Canchy data (2.3) for equation 

(1.21) is incorrect in the classical sense. 

Equation (1.21) belongs to the class of equations, whose boundary value problems 

have been studied by Kel’dysh [13], w h o considered the boundary value problems in a 

region bounded by the segment MN of the q-axis and a smooth curver, based on ths segment 

MN and located in the half-plane E > 0. Existence of a continuous solution of the Dirichlet 

problem and of the problem E (when segment MN is free of given boundary conditions) de- 

pends on the behavior of the coefficient b (tf’, Z) of @, at z = 0. Since in the present case 

b (cp, 0) = 0, then by the theorem of Kel’dysh, there exists some continuous solution to 

the Dirichlet problem, and the contour r may be chosen arbitrarily (except that it must be 

smooth), and also @ may be arbitrarily given on r (@ = 0 on MN). Each such solution 

generates some function D (cp) and consequently, some surface of weak discontinuity. 

In this manner, we can obtain a family of solutions, depending on the arbitrary 

functions shown above, and then we can try to use them to approximate the given function 

II (9). We can also immediately solve the Cauchy problem (2.3) for equation (1.21) by 

Fourier methods exactly as it was done in the hyperbolic case, taking relatively few terms 

of the series, i.e. using the simplest method of regularisation of an incorrect problem. The 

existence of an exact solution of the given problem remains an open question. 
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Till now, we considered the behavior of double waves only in the neighborhood of the 

Iine r = 0 end introduced the equations describing the motion of gas in the narrow vicinity 

of the weak discontinuity. 

However, equation (1.141, as observed before, is exact in the sense that it can be 
obtained from the equations of double waves under the single assumption that 8 = 6 fr). 

This equation can also be obtained from the equations of cylindrical self-simifar motion 

with the independent variable t/ zr* + xz8 f t fcf [ld). 

For such a function 6, equation Cl.21 will have the form 

r2UIrr + (1 - 0,‘) CD,, + r (1 - 0r2) CD, = 0 (2.12) 

(this equation was studied in [IO], but for other purposes). 

With the aid of the systems of equations (1.14) and (2.121, whose solutions satisfy ths 
initial conditions stated above, we can find the family of solutions of the gas dynamical 
equations (for example, by Fourier’s method), belonging to the class of double waves, 
behind the surface of a weak discontinuity of, in general, arbitrary shape. These solutions 
already are no longer valid only in the vicinity of the weak discontinuity, but sre correct 
in the general case until the appearance of limiting lines in the flow (cf [IO]). In the 
neighborhood of the discontinuity these flows behave in the same manner as the flows 
obtained from the systems (1.20) and (1.21). 

In section 3 we show that under some conditions, the flow behind the surface of an 
arbitrary weak discontinuity can, from some definite instant of time, be approximately 
treated as a double wave. Thus, the formalism of double waves gives an effective means 
to obtain approximate flow pictnre in some neighborhood of an arbitrary weak discontinuity 
of the type described. 

3. We shall assume that a weak discontinuity snrface, propagating into a gas at rest, 
is given by equation (1.221, where the function y satisfies (1.23). Surface (1.22), wiI1 be 
a characteristic surface of the systems of equations (0.1) and (0.2). on which si = 0 and 
c = 1. 

The jumps arising in the derivatives U~J, and C+ across the characteristic snrface 

(1.22) satisfy (cf [15]) the relation 

@I+, z42+r cd = c WY,, CY2, l/2 (Y - 1)) (3.1) 

where UQ and C* are the jumps in the derivatives normal to the surface (l-22), the 

vector (CY’,, CY,, ‘la (y - 1)) is the right null-vector of the characteristic matrix 

of the systems (0.1) and (0.2), and Q is some scalar multiplier. The characteristic snrface 

(1.22) may be covered by a family of hi-characteristic rays, satisfying the equations 

t’ = 1, 5; = c2Yy,, x; = c2Y* (3.2) 

In the present case, we take time t ss the parameter on the hi-characteristic ray, along 
which tits derivative is taken (denoted by a dot in (3.2)). The weak discontfnaity snrface 
(1.221, determined by Equations (1.231, will b e a developable surface ia x1x, t, in this case, 
whib ths bi-chantoterfstics, which are chamcterfstios of etptation (1.23), are in t&s case, 
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straight lines in Z,X& Along the bi-characteristics, \r: = const and ya = const. 

This follows from the relation 

YIS,’ -+ Y2x,’ = 1 

which shows that the surface t = Y (x1, x2) is an integral of the system (3.2). 

In [151, f or s s ems of first order linear equations, an ordinary differential equation y t 
(equation of transport) was obtained,in accordance with which the scalar o propagates along 
the hi-characteristic rays, and the possibility was indicated of obtaining the equations of 
transport for quasilinear systems. The equation of transport for two quasilinear equations 
with two independent variables (with (T propagating along the characteristics) was studied 
in detail in [16]. Below, we shall derive the equation of transport for the system (0.1) and 
(0.2) in the case of a flow adjacent to a region of rest. This will be utilised later. 

Let us change to new independent variables in (0.1) and (0.2). 

El = Xl, Ez = xzr g3 = y (x11 4 - t (3.3) 

On substitution, we obtain 

For the system (3.4) and (3.5), the equation of the characteristic surface 

R (&, &., fa) = 0 has the form 
(3.6) 

and the surface R = E, = 0 corresponds to the weak discontinuity surface. 

The equations of the bicharacteristics are 

E; = c2Y1, gg = c2Y2, g; =o (3.7) 

Let&, La, and L, denote the left-hand sides of the equations obtained by differentia- 

ting with respect to & (3.4) and (3.5) respectively. Multiplying L,, L,, and LS by 

cYt, cY’,, and 1. and adding, we have, on the characteristic surface, 

(3.8) 
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+$(%+Z a,; +-P,+gY,)=O 

Differentiation with to E1 and Ea will be internal on the characteristic surface Es = 0. 

Since the weak discontinuity front, all derivatives of the functions ui and c are equal to 

zero, then from (3.1), we have for the jumps in the derivatives in this case 

( au1 au, ac 
a%, a& 

-= 
ab ) ( 6 CY'l, CYa, T+ 1 (3.9) 

Using (1.23), (3.9) and the relation 

f’ = cay1 g1 + c"Ya ga 
to differentiate the function f along the bicharacteristics (3.7). we finally obtain from (3.8) 

the following transport eqnation for D : 

In the present case, (3.10) is a Riccati equation, in contrast to the case of a linear 

system, when the transport equation is also a linear ordinary equation. Instead of 5~ and 

& in the coefficients of (3.10). we should substitute the quantities El = UI~ + bt, 

Ea = a.$ + b,, ai = const, bi = con&, c = 1. This follows from (3.7) after integrat- 

ing the bicharacteristic equations. 

If the weak discontinuity is planar, i.e. Yll + Yy,, = 0, then from (3.10), we have 

the equation 

0’ + ‘/a (y + I)@ = 0 (3.11) 

whose general solution is 

1 

Q = ‘/a(TCl)~fA 
($4 = const) (3.12) 

This result corresponds to the theory of simple waves, the class of which always 

includes a plane one-dimensional flow adjoining a region of rest across a weak discontinuity. 

In fact, writing the equation of simple waves as (cf. [9]) 

2 - [‘iz (y + 1)u + 1 It = F (4 

where IA is the velocity, x is the space coordinate and F (u) is an arbitrary function 

(F (0) = 01, and expanding (u) near II = 0 into a Taylor series, we shall have for &,J / 8s , 

on the weak discontinuity, 

au 1 
al:= lja(~+~)t+~o’ 

F=aF 
O au Or u=o 

Let us consider the one-dimensional cylindrical case, when the motion of the weak 

discontinuity is defined by the equation vm = t. In this case, Y,, + 

Yy,, = 1 / t and equation (3.10) assumes the form 

6’+ (3.13) 
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Using the fact that U = 1 / (y + I)t is a particular solution, we can write the 

general solution of (3.13) as 

Q= 
1 1 

(T + 1) t + /itXlg - (r + 1) t 
(A = cotlst) 

We shall consider some neighborhood L$ of the weak discontinuity (1.22), character- 

ized by the fact that et any i? > tk and for any point (xtr x2, i!), in this neighborhood, 

there exists a point (X1’, xzo, t) on the surface (1.22), snob that 

1x1 - 5x0 / < k, I % - 47 e k 

From (3.14), it follows that if at some instant t = t, the weak discontinuity occupies 

the poeitionl/tt + X: = t,,, and two different flows behind it are characterfeed by two 

different scalara or and era to which correspond the constants A I < w and 4% = 00 

(i.e. seIf-aimilar motion with independent variable vm / t), then for large t 

Thus, if a week discontinuity propagating iuto the gas at rest exists in a one-dimensional 

eyiindricel flow, and if at the instant t = to, it is known that the derivativea of all the gas- 

dynamical quantities undergo a finite jnmp and the radius of the weak discontinuity in- 

creases with t, then, in the neighborhood Ah the given flow may during the time interval 

tk - 0 (&‘/a) be approximated by a self-similar flow with variable I/Z,” -j- ~2 / t 

with the accuracy 0 (k’) for t > tk (k < 1). The requirement of the accnracy 0 (k’) arises 

in connection with the determination of sr, u, and c. 

It can be shown that a similar result also holds for week discontinuitiee of arbitrary 

form, provided its radius of curvetnre increases with time. The onIy difference is that 

instead of a self-similar solution, the class of doable wave solutions must be considered. 

Also, it is obviously always assumed. that the flow in the neighborhood of the weak die- 

continuity is sufficiently smooth. 

In fact, differentiating (1.23) with respect to ~1 and r+, we have 

Ia1 
Yll+‘gaa=-- - 

Yiya 
(3.16) 

Introducing the curvature K of the plane curve Y (x1, xr)=te, lying in the plane t = to. 

and using (1.23), we write (3.10) in the form 

(3.17) 

Along the fixed bicharactcristic with II = con&, and Ya = const , the quantity K 

may be represented in this case as 

1 
K=---- 

t+tB @ = coast) (3. I8) 

Indeed, obtaining along the bicharecteriatics the derivative 

p _ Y,lYl + Y‘dxxa PY 

Yai’ 
-? yikj = oy axj ax& (3.19) 
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with the aid of the equality 

‘y,,,‘y, + YUY,, + YU,YZ + ‘y1*Y,* = 0 

which was obtained by differentiating (1.23) with respect to x1 and 3~~. we get 

(A-).=- 1 
YlY2 

(3.20) 

Integrating (3.20), we obtain for Y,, 

1 

Yz1= --t/ V!~YZ + B (B =const) (2.21) 

Finally, we write (3.10) in the general case as 

1 o*+T+a2+2(t+L1)3=0 (3.22) 

Its general solution is 

1 1 

o = (7 + 1) P + B) + A (t + Bf” - (-f + 1) (t + B) 
(‘4 = const) (3.23) 

ing 

From relations (1.3), which in accordance with the above discussion, have the follow- 

form in the neighborhood of the weak discontinuity 

zrl = [r + 1/a (y - 1) M$.] Cos qt + or co9 ‘p - r-l@, sin cp 

2, = [r + 1/2 (y - 1) BB,] sin qU + CD, sin ‘p + r+ @,+ co9 cp 

(3.24) 

for the scalar ud, corresponding to the class of double waves, we use the conditions (1.11) 

and (1.26) on the weak discontinuity for the functions 8 and @ to obtain the following pro- 

pagation equation along the bicharacteristics : 

1 

‘d = (‘r + 1) (t + BI) 
(I?1 = const) (3.25) 

let us assume that the radius of curvature of a weak discontinuity increases with 

time, that the perturbations in the flow behind the discontinuity do not catch up with the 

discontinuity (flow in the neighborhood of the discontinuity is sufficiently smooth) and, 

that at the time t = to > ( B, 1 , the scalar 0 in (3.23) along some arc of the weak dis- 

continuity is determined by the constants A, B, ao <A < aI, b, <B < bl, UO, a,, b0, 

and b, = const, in such a way that it does not become infinite with increasing t. Then, 

on the part of the surface of weak discontinuity (t > to), formed by the bicharacteristic 

passing through the points of the above mentioned arc, we have, for sufficiently large t, 

lad - (T 1 cv o(t-““) (3.26) 

Thus, in case of an arbitrary weak discontinuity under the above restrictions in the 

neighborhood Ak and for sufficiently large fk _ 0 (k-‘/a) with accuracy of 0 (k’) , the solutions, 

for small k, can approximately be equal to the double wave; consequently, the problem 

reduces to the solution of equations (1.14) and (2.12) with the initial conditions given 

above. A cruder approximation may be obtained by considering instead of the system (1.14) 

and (2.12), Equations (1.20) and (1.21) with the corresponding initial data and h = 0 (k). 

This allows us to construct an approximate flow pattern in the neighborhood of a weak 
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discontinuity in many problems, for example, when the weak discontinuity results from the 

motion of a curved piston of arbitrary form out of the volume of gas at rest according to 

some law of motion, and the flow is such that none of the perturbations in the flow region 

reach the stage of the weak discontinuity. 

Note 3.1. The problems considered in the class of double waves for the system of 

equations (1.141 and (2.12) permit us to construct the flows behind weak discontinuities 

not only when the weak discontinuity becomes a sound wave as t + m , but also for many 

flows whose existence is limited in time, and which are valid only until a shock wave 

forms. This can be done, for example, as in [17], using the method of reflecting the flows 

in question in the coordinate axes. There are four possible types of such flows and they 

are analogous to the one-dimensional case of centered simple waves, where ‘forward- 

facing’ and ‘backward-facing’ expansion and compression waves occur (cf [17] 1. 

Note 3.2. In the use of double waves in the approximate construction of flows in the 

neighborhood of arbitrary weak discontinnities, it may be useful to point out the fact that 

the jumps in the derivatives of al, I+ and c are at each instant inversely proportional to 

the radius 01 curvature of the line of the weak discontinuity. This fact easily follows from 

formulas (3.24). which give the line of weak discontinuity for the values t = const, r = 0, 

in a parametric form. 

BIBLIOGRAPHY 

1. Courant Il., and Friedrichs K.O. Supersonic Flow and Shock Waves. Interscience 

1948. 

2. Nikol’skii A.A. Obobshchenie voln Rimana na sluchai prostranstva (Generalization 

of Riemann waves to threedimensioual cases). Book ‘Sb. teor. rabot po aerodinamike’ 

(CollectionofTheoretical papers in aerodynamics) Moscow, Oborongiz, 1957. 

3. Ianenko, N.N. Begnshchie volny sistemy kvazilineinykh uravnenii (Moving waves of 

the system of quasilinear equations). Dokl. AN SSSR. Vol. 109, No. 1, 1956. 

4. Pogodin Iu.Ia., Suchkov V.A. and Ianenko N.N. 0 begnshchikh volnakh nravnenii 

gazovoi dinamiki (On moving waves of the equations of gas dynamics). Dokl. AN SSSR, 

Vol. 119, No. 3, 1958. 

5. Sidorov A.F. and Ianenko N.N. K voproeu o nestatsionarnykh ploskikh techeniiakh 

politropnovo gaea s priamolineinymi kharakteristiksmi (On the question of non- 

stationary plane flows of a polytropic gas with rectilinear-characteristics). Dokl. AN 

SSSR, Vol. 123, No. 5, 1958. 

6. Ryzhov O.S. 0 techeniiakh s vyrozhdennym godografom (On flows with degenerate 

hodographs). PMM, Vol. 21, No. 4, 1957. 

7. Sidorov A.F. 0 nestatsionamykh potentsial’nykh dvizheniiakb politropnovo gaze s 

vyrozhdannym godografom (On non-stationary potential motion of a polytropic gas 

with degenerate hodograph). PMM, Vol. 23, No. 5, 1959. 

8. Smirnov V.I. Kurs vysshei matematiki (Course in higher mathematics). Second edition, 

Vol. IV, Gostekbizdat, 1951. 



Bibliography 215 

9. Landau L.D.. and Lifshits E.M. Mekhanika sploshnykh sred (Mechanics of continuous 

media). Second edition, chapter 14, Gostekhizdat, 1954. 

10. Sidorov A.F. Nekotorye tochnye resheniia nestatsionamoi dvumemoi gazovoi 

dinamiki (Some exact solutions of non-stationary two-dimensional gas dynamics). 

PMM, Vol. 26, No. 2, 1962. 

Il. Bitsadze A.V. Uravneniia smeshannovo tipa (Equations of the mixed type). Izd-vo 

AN SSSR, 1959. 

12. Tersenov S.A. 0 zadache s daunymi na linii vyroshdeniia dlia sistem uravnenii 

giperbolicheskovo tipa (On the problem with the data on the degenerate line for a 

system of hyperbolic type equations) Dokl. AN SSSR, Vol. 155, No. 2, 1964. 

13. Kel’dysh M.V. 0 nekotorykh sluchaiakh vyrozhdeniia nravnenii eIlipticheskovo tipa 

na granitse oblasti (On some cases of degeneracy of the equations of elliptic type 

on the boundary of a region). Dokl. AN SSSR, Vol. 77, No. 2, 1951. 

14. Sedov L.I. Metody podobiia i razmernosti v mekhanike (Dimensional and similarity 

methods in mechanics). 4th edition, Gostekhizdat, 1957. 

15. Courant R. Partial differential equations Chap. 6. Wiley-Interscience 1962. 

16. Nitsche J. fiber Unstetigkeiten in den Ableitungen von Li&ungen quasilinearer 

hyperbolischer Differentialgleichungssysteme. J. Rat. Mech. and Anal. Vol. 2, 

No. 2, 1953. 

17. von Mises, R. Matem~ticheskaia teoriia techenii szhimaemoi zhidkosti (Mathematical 

theory of compressible flow). M., Izd. inostr. Iit., 1961. 

Tmnslated by C.K.C. 


